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An LMI-Based Fuzzy State Feedback Control with Multi- 
Objectives 
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Yoonsu Nam 
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This paper proposes a systematic design methodology for the Takagi-Sugeno (TS) model 

based fuzzy state feedback control system with multi-objectives. In this investigation, the 

objectives are set to be guaranteed stability and pre-specified transient performance, and this 

scheme is applied to a nonlinear magnetic bearing system. More significantly, in the proposed 

methodology, the control design problems that consider both stability and desired transient 

performance are reduced to the standard LMI problems. Therefore, solving these LMI 

constraints directly (not trial and error) lead to a fuzzy state-feedback controller such that the 

resulting fuzzy control system meets the above two objectives. Simulation and experimentation 

results show that the proposed LMI-based design methodology yields not only maximized 

stability boundary but also the desired transient responses. 
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1. Introduct ion  

In the past two decades, Fuzzy Logic Control 

(FLC) has been proposed as an alternative to the 

traditional control techniques with many success- 

ful applications. In particular, systems which are 

difficult to model, because of insufficient knowl- 

edge of  the dynamic characteristics, and nonlinear 

terms with significant variations in the parameter 

of the model are attractive candidates for the 

application of FLC. However it has been argued 

that FLC being a rule based control strategy, 

almost by definition, lacks an analytic and sys- 

tematic methodology for the issues of stability, 
robustness, and other performance requirements, 
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and therefore, it cannot be reconciled with the 

traditional methods of control design and an- 

alysis. 

In recent years, there have been many research 

efforts on these issues based on the Takagi-Su-  

geno (TS) model (Takagi, 1985) based fuzzy con- 

trol (Parallel Distributed Compensator (PDC),  

following the terminology in (Tanaka, 1994), 

(Wang, 1996)). The concept of  the PDC ap- 

proach is to design a compensator using linear 

control design techniques for each TS linear local 

model. The resulting overall fuzzy controller, 

which is nonlinear, behaves like a gain-schedul- 

ing controller, where the gain-scheduling is im- 

plemented with fuzzy logic. For  this TS model 
based fuzzy control system, Wang et al. (Wang, 

1996) proved the stability by finding a common 

symmetric positive definite matrix P for the r 

subsystems in general and suggested the idea of 

using Linear Matrix Inequality (LMI) for finding 

the common P matrix. By introducing the stability 
issue in fuzzy control, their works have been con- 
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sidered very important results and some refining 

efforts have been pursued thereafter. However the 

design process presented in (Tanaka, 1994) and 

(Wang, 1996) involves an iterative process. That 

is, for each rule a controller is designed based on 

consideration of local performance only, then 

LMI-  based stability analysis is carried out to 

check the global stability condition. In the case 

that the stability conditions are not satisfied, the 

controller for each rule should be redesigned. To 

overcome such a defect, Zhao et al. (Zhao, 1996) 

pointed out that it is more desirable to directly 

design a controller (instead of  iterative process) 

which guarantees global stability by recasting to 

LMI problems. They, however, did not consider 

performance issues such as transient behaviors. 

Generally, such a design focused on only stability 

issue does not directly deal with the desired 

dynamic characteristic of the c losed- loop system, 

which is commonly expressed in terms of  transi- 

ent responses. In contrast, satisfactory time re- 

sponse and closed-loop damping can be enforced 

by constraining the c losed- loop poles to lie in a 

suitable subregion of the left-half  plane (Chilali,  

1996). Motivated by the LMI formulation of pole 

placement constraint of the conventional state 

feedback case in (Chilali, 1996), we tried to mo- 

dify the formulation to apply to the multi-objec- 

tive TS model based FLC design problem. 

In this paper, our main focus is on (i)  the ex- 

tension of the previous LMI-based  design me- 

thodology for the stable fuzzy control system by 

imposing the addit ional requirement of the clos- 

ed- loop  pole locations, and (2) the demonstra- 

tion of the usefulness of the proposed design 

methodology via applying it to a regulation pro- 

blem of a nonlinear magnetic bearing system. 

Especially, among many serious problems per- 

taining to magnetic bearings, the gap nonlinearity 

of magnetic force is dealt with. The same model 
that has been studied previously in (Hong, 1999), 

(Hong, 1997) and (Hong, 2000) is used. 

This paper is organized into five sections. The 
next section introduces the background materials 

concerning TS fuzzy model and model-based 
fuzzy controller. Section I11 describes the for- 
mulations of the LMl-based  fuzzy state feedback 

controller for the stability and the c losed- loop 

pole location requirements. In Section IV, simula- 

tion studies and experimental results are pres- 

ented by the application of  the proposed metho- 

dology to the nonlinear magnetic bearing system. 

Concluding remarks are given in Section V. 

2. TS Fuzzy Model and Control 

2.1 TS fuzzy  model 
An nth order SISO nonlinear system can be 

expressed in the following form : 

~?x----x2 

"~2 =Xs  ( 1 ) 

.iCn---- f (Xx, X2, "", Xn, U) 

where, u is the control input. By taking the 

Taylor 's series expansion of Eq. (I) for r operat- 

ing points (x*, u*) ,  where / = 1 ,  2, ..-, r ,  the 

nonlinear system can be represented by the fol- 

lowing linearized state space form with the bias 

term di induced from the model linearization : 

J c = A ~ x + B i u + d ~ ,  i = 1 ,  2, " . ,  r (2) 

where, 

l 0 1 ... 0 
: : 0 

A i  = 0 0 ... 1 

Of(xt, u*) a/(xt, u*) ~f(xt, u*) 
8x2 ax. 

di= f (xL 

~X,1 

0 

0 

Of (xL u*) 
Ou 

0 l 0 
n u*)-~, O/(xt, u*) xt O/(xt, u*) 

l=1 Oxt Ou u* 

and the variables with * denote the values at the 

operating points. 
The continuous fuzzy dynamic model is des- 

cribed by fuzzy If-Then rules to express local 
linear input-output  relations of nonlinear systems 
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around each operating point by the above linear 

local model. The ith rule of  this fuzzy model is of 

the following form: 

If x~(t) is L ,  and '"  xn(t) is Li,  and u(t) is M, (3  ) 
Then ~ (x )=A~r ( t )+Biu ( t )  +di 
i =1 ,  2, '--, r and r is the number of rules and 

L;~ and M,- are fuzzy sets centered at the ith 

operating point. The categories of the fuzzy sets 

are expressed as NE, ZE, and PO, where NE 

represents negative, ZE zero, and PO positive. 

The inference performed via the TS model is an 

interpolation of  all the relevant linear models. 

The degree of  relevance becomes the weight in the 

interpolation process. It should be noted that even 

if the rules in a TS fuzzy model involve only 

linear combinations of  the model inputs, the en- 

tire model is truly nonlinear as shown in (4) 

below. 

Given a pair of  ( x .  u) ,  the final output of the 

fuzzy system is given by the equation below : 

~. W~.{ A ~c +B,u+d ,  } 
x _  i: l  (4) 4w, 

i=1  

n 

where, Wi=II (L i j ( x i ) 'Mi (u ) ) ,  L~(x~),  and 
j = l  

Ms(u) are the grades of membership of x~ and 

u in L ~  and M;, respectively. 

2.2 TS model-based fuzzy control 
The concept of PDC, following the termino- 

logy (Tanaka, 1994), (Wang, 1996), is utilized to 

design fuzzy state-feedback controllers on the 

basis of  the TS fuzzy models (3). Linear control 

theory can be used to design the consequent parts 

of  the fuzzy control rules, because the consequent 

parts of  TS fuzzy models are described by linear 

state equations. If we compute the control input u 

to be 

u=~-Ko~  (5) 

w h e r e , / ~ i = d i ( l ,  n)/Bi(1, rt), then the Eq. (2) 
is described by 

5c=Aoc+B~5, i = 1 ,  2, "-, r .  (6) 

Based on the revised piecewise linear model (6), 

we determine a state feedback controller des- 
cribed by 

f ,  = K , x  (7) 

where, K; is a feedback gain matrix to be chosen 

for the ith operating point via proper design 

methodologies. It should be noted that, however, 

the value of the control input actually used in the 

fuzzy rules would be derived from Eq. (5). Hence 

a set of r control rules takes the following form : 

If xl(t) is Lxl~ and '" x,(t) is L=i and u(t) is Lui, (8) 
Then u(t+l)=K~r(t) 

where, the index t + l  in the consequent part is 

introduced to distinguish the previous control 

action in the antecedent part in order to avoid 

algebraic loops. Each of the rules can be viewed 

as describing a "local" state-feedback controller 

associated with the corresponding "local" sub- 

model of the system to be controlled. The res- 

ulting total control action is 

I/V,. ( K,x - Ko,) 
i=1 (9) 

Ewe. 
i= l  

Note that the resulting fuzzy controller (9) is 

nonlinear in general since the coefficient of the 

controller depends nonlinearly on the system in- 

put and output via the fuzzy weights. Substituting 

(9) into (4), the fuzzy control system (closed- 

loop),  shortly FCS, can be represented by 

r r 

Z Z  W, Wj{ A , +  B,Kj } 
:~-/="=~ x. (10) 

i = l j = l  

3. An LMI-Based  Fuzzy State Feed- 
back Control System Design 

3.1 LMI  formulation for stability require- 
ment 

A sufficient quadratic stability condition deri- 

ved by Tanaka and Sugeno (Tanaka, 1992) for 

ensuring stability of  (10) is given as follows : 

Theorem 1. The fuzzy control system (10) is 
quadratically stable for some stable feedback Kj  

(via PDC scheme) if there exists a common 

positive definite matrix P such that 

{Ag+BgK~}TP+P{A~+B'K~}<O (11) 
i , j = l ,  2 , . . . , r .  
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Note that system (10) can be also rewritten as 

.¢ = e=ls=l ~<~ (12) 

i= ld= 1 

where, for G,=Ai+B~K~ for i = j = l ,  2, ".', r ,  

and Gi~- (Ae+BJfA + (Ai+BjK~) for i<j. 
2 

By applying Theorem 1, we have the following 

revised sufficient condition for the fuzzy control 

system (12). 

Theorem 2. The fuzzy control system (10) is 

quadratically stable for some state feedback K~ 

(via PDC scheme) if there exists a common 

positive definite matrix P such that 

Grp+PGa<O i = 1 ,  2, "-,  r ,  
(13) 

Grp+PG~j<O i<j<r.  

Conditions (13) are not jointly convex in Kfls 

and P. To cast these conditions into LMls, we 

define Q=P-'. Then we can rewrite (13) as : 

QG~+G~.Q<O i = 1 ,  2, ..., r ,  (14) 
QGr +G~Q<O i<j~r .  

Our objective is to design the gain matrix Kj  

( i = 1 ,  2, -",  r )  such that conditions (14) can be 

satisfied. This is the 'quadratic stabilizability'  

problem. If such a gain K~ exists, the system is 

said to be quadratic ally stabilizable. 

3.2 LMI formulation for pole-placement 
requirement 

In the synthesis of a control system, meeting 

some desired performances should be considered 

along with stability. Generally, stability condition 

(Theorem 2) does not directly deal with the 

transient responses of the c losed- loop system. In 
contrast, a satisfactory transient response of a 

system can be guaranteed by confining its poles in 

a prescribed region. This section discusses a 

Lyapunov characterization of  pole clustering 

regions in terms of LMls. To this purpose, we 

introduce the following LMI-based  represent- 
ation of stability regions. 

Definition 1. LMI Stability Region (Chilali,  

1996). A subset of D of the complex plane is 

called an LMI region if there exits a symmetric 

Im 

Re ,ii 

max, 60 d 

Fig. I Circular region (D) for pole locations 

matrix a = [a~l] E R  m×= and a matrix 13= [/3kz] E 
R m×m such that 

D = {  z ~ C  ~ fv(z) < 0  } (15) 

where the characteristic function fD(z) is given 

by fo(z)=[ahlW/3~Z+/3k~]l<k,Z<m (fv is valu- 

ed in the space of m × m Hermitian matrices). It 

is easily seen that LMI regions are convex and 

symmetric with respect to the real axis. Spec- 

ifically, we consider a circle LMI region D 

D = { x + j y E C  : (x+q)Z+yZ<r z} (16) 

centered at ( - -q ,  0) and has radius r > 0 ,  where 

the characteristic function is given by 

- - y  
fD(z) = ( z q - q  ~q-q]-r /" (17) 

As shown in Fig. 1, if/l=--£Wn+---jwa is a com- 
plex pole lying in D with damping ratio ~', 

undamped natural frequency COn, damped natural 

frequency COn, then ~>~/1--(r2/q2), con<q+r, 
and COd< r .  This circle region puts a lower bound 

on both exponential decay rate and the damping 

ratio of  the c losed- loop response, and thus is very 

common in practical control design. Motivated by 

Chilali  and Cabinet 's Theorem (Chilali,  1996), 

an extended Lyapunov Theorem for the fuzzy 

control system (10) is developed with the above 

definition of  an LMI-based  circular pole region 

as below. 

Theorem 3. The fuzzy control system (10) is D -  

stable (all the complex poles lying in LMI region 
D) if and only if there exists a positive symmetric 
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matrix Q such that 

-rQ qQ+Q{A,+B~}r~ 
(qQ+{A~+BJ~}Q -rQ / < 0  (18) 

The proof  and more details of this theorem can be 

found in (Chilali,  1996). 

It should be noted that since Theorem 3 will be 

used for the supplementary constraints in our 

problem, constraints of the LMI region to both 

cases of i=j and i<j may not be necessary: it 

suffices to locate the poles of  only dominant term 

(in the case of i : j )  in the prescribed LMI 

regions. 

2.3 Formulation for the synthesis 
In this section, we formulate a problem for the 

design of a fuzzy state feedback control system 

that guarantees stability and satisfies desired 

transient responses by using the above LMI con- 

straint (14) and (18). With change of variable 

Yi=KiQ and substituting into (14) and (18), 

there lead to the following LMI formulation of  

our fuzzy state-feedback synthesis problem. 

Theorem 4. The fuzzy control system (10) is 

stabilizable in the specified region D via PDC 

scheme if there exists a common Q > 0  and Yi 

such that the following LMI conditions hold : 

A,Q+QAr +BiYi+ Y{BT<O 

A,Q+ QAr +B~Yj+ Y{B[ + AjQ+QA~+B~E.+ Y{Bf <0 
2 2 

-rQ qQ+QAr + ErB, I 
(qQ+A,Q+B,Y{ -rQ /<0 

(19) 

y ,  ~ , ,  

i 

Fig. 2 Laboratory magnetic bearing experimental 
setup 

Given a solution (Q, Y,-), the fuzzy state feedback 

gain is obtained by 

Ki = y.Q-m (20) 

As a result, the obtained gain guarantees global 

stability while it provides desired transient be- 

haviors by constraining the c losed- loop poles of 

the locally linearized systems in the region D. 

Admittedly with some degree of conservatism, 

these results offer numerically tractable means of 

performing multi-objective fuzzy state-feedback 

controller design. 

4. Application to an Active Magnetic 
Bearing System 

The objective of the control system of an active 

magnetic bearing (AMB) is to maximize the sta- 

ble boundary of operation with desired transient 

performance through overcoming the gap non- 

linearity. To achieve such an objective, we design 

a fuzzy state-feedback controller based on The- 

orem 4 for a nonlinear AMB system. The validity 

and practicality of the obtained controller is de- 

monstrated through simulations and experiments. 

The model that has been studied previously in 

(Hong, 1997) and (Hong, 2000) is used. 

4.1 Active magnetic bearing (AMB) system 
The AMB system employed in this research is a 

two-axis controlled vertical shaft magnetic bear- 

ing with a symmetric structure. An outline of this 

system is depicted in Fig. 2. Due to the small 

gyroscopic effect of this setup (Hong, 2000), the 

system can be divided into two identical subsys- 

tems (x-z and y-z  planes),  which means that each 

gap displacement for the x-direction and y- 

direction can be controlled individually. Thus, 

without loss of generality, we will focus our 

analysis strictly on the x-direction motion only. 

The equations of motion for the AMB can be 
represented as (Hong, 2000): 

=[ 12k ~[ (ib+ip) z (ib-ip) 2_ ~ (21) 
2 ~ j~./~ (G_~xl)~ (G+~xl)2/ 

where, xt denotes the displacement of the rotor 
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from the center position, x2 is the velocity, and ip 
is the control input current applied to the elec- 
tromagnets. The physical parameters of this 
experimental setup are given as follows : 

k (force constant): 0.00186 lb. inZ/A z 
/~ (sensitivity of air gap to shaft displacement.): 

0.974 
ib (bias current): 0.3 A 
G (nominal air gap): 0.02 in 
l (length of the rotor): 4.8 in 
J'r (transverse MOI of the rotor): 0.134 lb . in . s  

4.2 TS fuzzy model for the AMB 
We represent the nonlinear system (21) by a 

TS fuzzy model (3) via linearization (using Tay- 
lor's series expansion) around several operating 
points (Hong, 1999), (Hong, 2000). With consi- 
derations of  the nonlinear dynamic characteristics 
of the AMB (Hong, 2000) shown in Fig. 3, the 
membership functions of the fuzzy sets for xt, and 
u (= ip)  are defined as Fig. 4. 

With this definition we have totally 3z=9 rules. 

2 

~ 0.5 
,,g 
o 0 

~-o.s 
E 

-1.5 

-2 
-1 

Fig. 3 

'./ / 
/' 

/ 

\,, . . / t  0:005 

', ;Ix=O 
:'/ 
: / 

.' } 

,/ 
/ , \  / /  

-0'.s ; ols 
currer~(Amp) 

2 -D View o f  the magnetic force characteristic 

NE ZE PO NE ZE PO 

-1 0 1 -0.3 0 0.3 
xl(10 ~ mch) tt(amp) 

Fig. 4 Membership function 

However, to reduce the number of fuzzy rules, the 
rules with similar antecedents and same conse- 
quent were grouped together and described by a 
single approximate rule. As a result, three rules 
are used to describe nonlinear dynamics (21). 
Denoting x=[x l  x2]', the piecewise linear TS 
fuzzy model can be written as:  

Plant Rule 1: I f x l ( t )  is ZE, 
Then ~ ? ( t ) = A l x + B l u + d l  

Plant Rule 2: If xa(t) is P O ( o r  NE) 
and u ( t ) is ZE, 
Then .~ (t) :A2x+B2u+-d2 

Plant Rule 3: I f x l ( t )  is P O ( o r  NE) 
and u(t)  is N E ( o r  PO), 
Then ~ ? ( t ) = m 3 x + B 3 u + d s  

where, 

A1=[16~06 0] '  A2=[63~40 0] '  A3=[63~40 10] 

4.3 Synthesis of fuzzy control system 
Using Theorem 4, we can design a fuzzy state 

feedback controller that guarantees global stabil- 
ity while provides desired transient behavior by 
locating the closed-loop poles in D. The stability 
region D is a circle of  center ( - q ,  0) and radius 
r and the LMI synthesis is performed for a set of  
values : 

(q, r)  : (450, 250) 

which constraint the transient response by the 
damping ratio as ~>0.83, and rise time as 
0.0025<tr<0.009.  Then the LMI region has the 
following characteristic function as 

YD(Z) ( - - 2 5 0  450-k-Z) 
= \ 4 5 0 + Z  --250 " 

By solving the LMI feasibility problem of 
Theorem 4, we can obtain a positive symmetric 
matrix Q as 

O = (  0.0001 -0 .0158)  
-0.0158 4.8053 " 
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And Y1, Yz and Ys as 

]11= [0.0021 -- 1.0435], Yz= [0.0002 -0.2052],  

Ys = [-0.0049 -2.2716].  

Finally, the state feedback gain can be obtained 
by (20) 

K I =  [ -  108.49 -0 .57 ] , / ( , 2=  [ -71 .81  -0.2052] ,  
K3= [.-212.34 -1 .17] .  

For the comparison, we also calculate the state 
feedback gains when the constraint for the pole- 
placement is omitted (i.e., considering only sta- 
bility condition). At that time a positive symmet- 
ric matrix Q, matrix Y,., and gain matrix K~ are as 
belows : 

/ 0.0007 --0.0414\ Q 
----(--0.0414 7.3873 ) 

Yl=[--0.0161 0.5540], Y2=[-0 .0203  1.0659], 
Ya--- [ -0 .0229 0.6460] 

K~=[--31.00 --0.10], K z = [ - 3 4 . 3 5  -0 .05] ,  
Ks=  [.-46.12 -0 .17]  

The resulting fuzzy control law for each piecewise 
linear segment of the fuzzy model can be written 
as follows : 

Control Rule 1 : If xl( t )  is ZE, 
Then u (t + 1) = K ~ - K 0 1  

Control Rule 2:  I f x l ( t )  is PO(o r  NE) 
and u(t)  is ZE, 
Then u ( t +  1) = K z x - K 0 z  

Control Rule 3: I f x l  (t) is P O ( o r  NE) 
and u(t)  is N E ( o r  PO), 
Then u (t + 1 ) = / fax  --/(-o3 

where, K01=0, K02=0.147, and K0s=0.197. 
The resulting total control action can be writ- 

ten as (for the positive rotor displacement): 

u(t+l)=( w~+ w2+ ~ 
+(  W~KoI+ W2_Ko,+ W3K.3 ). 

W~+ W2+ W3 

5. Simulations and Experimental 
Results 

the perpose of comparison, another fuzzy state 
feedback controller that was obtained by stability 
constraints only (without pole-placement cons- 
traints) was employed. It can be noticed that the 
results of  the fuzzy controller obtained by both 
stability and pole placement constraints (Fig. 5) 
indicate better transient performance than those 
of another fuzzy controller obtained by stability 
constraints only (Fig. 6), while both fuzzy con- 
trollers give stable response regardless of  any 
initial displacement. Therefore, it is desirable to 
tune the stability and transient response simulta- 
neously by combining these two objectives. 

The performances of  these two controllers were 
measured by the following quadratic error index 

8 
o 
_.q 

E 

-~ 4 

z? 
x 

2 

Fig. 5 

10 .3 

~5 ._c 
v 
¢- 

E 
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Fuzzy control wi th both stabil i ty and pole 

placement constraints 

10 

8 

6 

4 

2 

0 

-2 

-4 5.1 S i m u l a t i o n s  0 

To investigate the effectiveness of  the proposed 
controller, some simulations were performed. For Fig. 6 

1 

10 

0 . 0 2  0.04 0 .06  0.08 0,'~ 

time (sec) 

Fuzzy control with stabil i ty constraints only 



112 Sung KyungHong and YoonsuNam 

Table 1 Com 

Design 
Constraints 

~arison of two LMI approaches 

Quadratic Error (inch) 

x (o)  = x (o)  = x (o)  = 

0.0033 0 . 0 0 6 6  0.0099 

• Stability Only 5.934e-05 2.541e-04 6.841e-04 
• Stability+ 4.292e-05 2.120e-04 6.338e-04 

Pole-Placement 

x 103 
101 t / 

Fig. 7 

0.02 

~" 8 
(.) 
.E 

~ 6  
E 
O 

£ 4  
¢/) 

"9 
X 

2 

0.'04 0.'06 0,'08 
time (sec) 

Conventional linear local control 

0.1 

Iq~=Jote" (r) Zdr. ( 2 2 )  

The above performance index was calculated for 

each response of three different initial displace- 

ments. They are summarized in Table 1. Through 

these results we can verify the effectiveness of 

the proposed multi-objective (stability & closed- 

loop pole location) design approach. 

We also tested the performance of the linear 

local controller (control rule 1) wfiich was 

designed for a single equilibrium point. As can be 

seen in Fig. 7, it performs well near the equilibri- 

um point, but its effectiveness deteriorates outside 

of the limited operating region and fails to regu- 

late the rotor for the initial displacement of x 

(0) =0.0075. This small boundary of stability is 

due largely to the nonlinearity of the AMB. 

5.2 Experimentation 
In our experiments, position feedback is ob- 

tained from position probes located in the stator. 

The velocity is obtained by differentiating the 

position signal. A third-order Butterworth filter 

, ,10 ~ 

H 

2 

£ o 

-2 t 
0 

Fig. 8 

005 0.1 0.15 0,2 
time (sec) 

Experiments of  fuzzy control with both sta- 
bi l i ty and pole placement constraints 

12 
10 s 

10 5 ~= 
A 8 

~ 6 

4 

~5 

-2 0 005 01 015 02 
time (sec) 

Fig. 9 Experiments of conventional linear local 
control 

with corner frequency of 200 Hz was used to 

reduce noise in the resulting velocity signal. The 

sampling frequency is 6000 Hz. Figure 8 shows 

that the fuzzy controller obtained stable responses 

with acceptable transient performance regardless 

of any initial position. On the other hand, as 

shown in Fig. 9, the linear local controller fails 

to regulate the rotor around initial displacement 

of x (0)=0 .007  in. These results are coinciding 

with the simulation results. In both Fig. 8 and 

Fig. 9, it can be seen that some oscillations appear 

at the transient region and gradually die out as 

it reaches steady state. The sources of such oscilla- 

tions are possibly due to the flexibility of the thin 
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rod which is attached between motor and rotor. 
Therefore extensions of  the proposed control 
scheme to a flexible dynamic system to achieve 
more sophisticated performance may be interesti- 
ng possibilities. 

6. Conclusion 

In this paper, a systematic design methodology 
for the fuzzy control of nonlinear AMB system 
with guaranteed stability and pre-specified tran- 
sient performance is presented. The framework is 
based on a Takagi-Sugeno fuzzy model and a 
parallel distributed compensation (PDC) scheme. 
More significantly, in the proposed methodology, 
the control design problems which considers both 
stability and desired transient performance are 
reduced to the standard LMI problems. Therefore 
solving these LMI constraints directly (not trial 

and error) leads to a fuzzy state-feedback con- 
troller such that the resulting fuzzy control system 
meets above two objectives. As a result, this 
approach is superior to other existing approaches, 
which achieves the desired control performances 
by trial and error. Simulation and experimenta- 
tion results showed that the multi-objective non- 
linear fuzzy controller proposed in this paper 
yields not only maximized stability boundary but 
also better transient performance than those of  
another fuzzy controller which was obtained by 
stability constraints only. As further studies, the 
extensions of the proposed control scheme to the 
problems common to all mechanical systems with 
rotating rotor such as cross-coupling caused by 
gyroscopic effect and vibration caused by external 
disturbances will be the possibilities. 
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